Dominance, epistasis, heritabilities and expected genetic gains
نویسنده
چکیده
Although epistasis is common in gene systems that determine quantitative traits, it is usually not possible to estimate the epistatic components of genotypic variance because experiments in breeding programs include only one type of progeny. As the study of this phenomenon is complex, there is a lack of theoretical knowledge on the contribution of the epistatic variances when predicting gains from selection and on the bias in estimating genetic parameters when fitting the additive-dominant model. The objective of this paper is to discuss these aspects. Regarding a non-inbred population, the genetic value due to dominance and the epistatic components of the genotypic value are not indicators of the number of favorable genes present in an individual. Thus, the efficiency of a selection process should be based on the narrow-sense heritability, a function only of additive variance. If there is no epistasis, generally it is satisfactory to assess the selection efficiency and to predict gain based on the broad-sense heritability. Regardless of the selection unit or type of epistasis, the bias in the estimate of the additive variance when assuming the additive-dominant model is considerable. This implies overestimation of the heritabilities at half sib family mean, plant within family and plant levels, and underestimation if the selection units are full sib progenies. The predicted gains will have a bias proportional to that of the heritability.
منابع مشابه
Quantitative genetics of doubled haploid populations and application to the theory of line development.
The line value of a genotype is defined as the expected value of all lines that can be derived from this genotype. Specific genetic effects are defined for this value: only additive and additive by additive epistatic effects are necessary. There is no dominance effect for such a value. A general expression for the covariances between related lines is given. From a design with several lines per ...
متن کاملمطالعه پارامترهای ژنتیکی عملکرد دانه و اجزای آن در پنج تلاقی گندم
The Genetic basis of grain yield and related characteristics were studied by a generation mean analysis in five crosses of winter wheat (Triticum aestivum L.). “Roshan”, “Mahdavi”, “Inia”, “Atila” and “Goscoyin” cultivars along with their F1, F2, BC1 and BC2 populations were evaluated by a split-plot design with crosses as the whole plot in a randomized complete block design with two replicatio...
متن کاملمطالعه پارامترهای ژنتیکی عملکرد دانه و اجزای آن در پنج تلاقی گندم
The Genetic basis of grain yield and related characteristics were studied by a generation mean analysis in five crosses of winter wheat (Triticum aestivum L.). “Roshan”, “Mahdavi”, “Inia”, “Atila” and “Goscoyin” cultivars along with their F1, F2, BC1 and BC2 populations were evaluated by a split-plot design with crosses as the whole plot in a randomized complete block design with two replicatio...
متن کاملTriple Test Cross Analysis for Genetic Components of Salinity Tolerance in Spring Wheat
Soil salinity poses considerable and increasing problems for agriculture, and is receiving much attention from plant breeders. The identification of genes whose expression enables plants to adapt to and/or tolerate salt stress is essential for breeding programs, but little is known about the genetic mechanisms of traits in saline conditions. The data obtained from 75 families produced by crossi...
متن کاملMetabolic models of selection response.
Consequences of directional selection on metabolic flux are explored in models for which variation in flux among individuals is generated by segregation of allelic variants at enzyme activity loci. The pattern of selection response is strongly affected by the presence of genetic dominance and epistasis, which are automatically generated in metabolic systems. The expected magnitudes of dominance...
متن کامل